DRMaxSAT with MaxHS: First Contact

A.Morgado! A.lgnatiev’* M.L.Bonet?> J.Marques-Silval
S.Buss®

1 Faculty of Science,University of Lisbon, Portugal
2 Computer Science, Universidad Politécnica de Cataluna, Barcelona, Spain
3 Department of Mathematics, University of California, San Diego, USA

4 ISDCT SB RAS, Irkutsk, Russia

SAT 2019

Motivation

® Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

Motivation

® Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

® From proof complexity point of view, Resolution is regarded as a
rather weak proof system

Motivation

® Success of Conflict-Driven Clause Learning (CDCL) demonstrates
the reach of the Resolution proof system

® From proof complexity point of view, Resolution is regarded as a
rather weak proof system

® Recent efforts for developing efficient implementations of stronger
proof systems:
— Extended Resolution (ExtRes)
— DRAT
— Cutting Planes (CP)
— Dual-Rail Maximum Satisfiability (DRMaxSAT)

DRMaxSAT - General Idea

® Translates a CNF formula F using the Dual-Rail Encoding

® Uses a MaxSAT algorithm to obtain the cost of the encoded
formula

® Determines the satisfiability of F based on the cost of the encoded
formula

DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:
¢ Pigeonhole Principle (PHP)
¢ Doubled Pigeonhole principle (2PHP)

DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:
¢ Pigeonhole Principle (PHP)
¢ Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:
® MaxSAT Resolution
® Core-Guided MaxSAT Algorithms

[AAAI18]

[SAT17]

DRMaxSAT - Previous work 1/3

Weighted DRMaxSAT simulates general resolution.

DRMaxSAT refutes in polynomial time:
¢ Pigeonhole Principle (PHP)
¢ Doubled Pigeonhole principle (2PHP)

MaxSAT algorithms based on:
® MaxSAT Resolution [AAAILE]

® Core-Guided MaxSAT Algorithms [SAT17]

® Hitting Set-based MaxSAT Approach: MaxHS-like Algorithm [satig)

DRMaxSAT - Previous work 2/3

1800 T
‘ }+ MaxHS
1600 —+— MSCG
‘\ f —*— LMHS
1400 | —— LMHS-nes
J OpenWBO16
1200] —— Eva500a
“ Tl lingeling
e |
1000
i
2 800 1
: “ / j
I
600 i]/ f I
400 ;f
200 3;?'
o M@&é

40 60 80
instances

PHP

CPU time (s)

1800
o MaxHS J
1600 —a— MSCG !
—— LMHS | /
1400 —— LMHS-nes |
OpenWBOI6 | |]
1200 —+— Eva500a
lingeling | T[
1000
800
600
400
200
0

30
instances

2PHP

Outline

Basic MaxHS Algorithm

DRMaxSAT

DRMaxSAT /basic MaxHS vs Pigeonhole Principle

DRMaxSAT /basic MaxHS vs Doubled Pigeonhole Principle

Conclusions

Outline

Basic MaxHS Algorithm

SAT

F - CNF formula: conjunction of clauses

Clause: disjunction of literals

Literal: variable x or its completement —x

A - Assignment: mapping from variables to {0,1}

SAT problem: Given F determine if there is an assignment A for
JF that satisfies all its clauses, otherwise F is unsatisfiable.

MaxSAT

® Partial MaxSAT problem < H,S >:
— H - set of hard clauses
— &S - set of soft clauses
Goal: Find an assignment A that satisfies all clauses in H and
maximizes the number of satisfied clauses in &

MaxSAT

® Partial MaxSAT problem < H,S >:

— H - set of hard clauses
— S - set of soft clauses

Goal: Find an assignment A that satisfies all clauses in H and
maximizes the number of satisfied clauses in &

® Cost of an assignment: number of unsatisfied clauses in S

Basic MaxHS-like Algorithm

® MaxHS is a relatively recent MaxSAT approach:
— based on the hitting set duality between MCSes and MUSes
— results in simpler oracle calls, but at the cost of possibly
exponentially larger number of calls

Basic MaxHS-like Algorithm

® MaxHS is a relatively recent MaxSAT approach:

— based on the hitting set duality between MCSes and MUSes
— results in simpler oracle calls, but at the cost of possibly
exponentially larger number of calls

Input : <H,S > WCNF formula
K+ 0
while true do

h < MinimumHS(K)

(st,u) < SAT(HUS\ h)

if st then return y

K<« KU {u}

o O A W N e

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)}

MHS

S={s1:(x1),%:(x2),s3: (—x)}

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)} S= {51 : (Xl),Sg : (Xz),Sg : (—|X2)}

MHS h={}. SAT
S\ h={(x1), (x), (—x2)}

—

il

EV

Unsat, Core: (ﬁX]. \ ‘\XQ), (Xl), (X2)

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)} S= {51 : (Xl),Sg : (Xz),Sg : (—|X2)}

MHS h=1{}, SAT
S\ h={(x1), (x2), (—x2)} -
I Unsat, Core: (v) (). (o) | |

==, New set to hit: k1 = {s1,5}

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)} S= {51 : (Xl),Sg : (Xz),Sg : (—|X2)}

MHS h=1{}, SAT
S\ h={(x1), (x2), (—x2)} -
I Unsat, Core: (v) (). (o) | |

==, New set to hit: k1 = {s1,5}

h={si}, S\ h={(x), (—x2)}

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)} S= {51 : (Xl),Sg : (Xz),Sg : (—|X2)}

MHS h={},
S\ h={(x1), (), (—x)}

il

Unsat, Core: (—x1 V —x2), (x1), (x2)

==, New set to hit: k1 = {s1,5}

h={si}, S\ h={(x), (—x2)}

==, New set to hit: kp = {s2,s3}

Example Basic MaxHS-like Algorithm

H = {(—|X1 V —|X2)} S= {51 : (Xl),Sg : (Xz),Sg : (—|X2)}

MHS h=1{}, SAT
S\ h={(x1), (%), (—x)} <
[Unsat, Core: (—x1 V —x2), (x1), (x2) U

==, New set to hit: k1 = {s1,5}

h={si}, S\ h={(x), (—x2)}

Unsat, Core: (x2), (—x2) U
=~ New set to hit: ko = {s2,s3}
h={s2}, S\ h={(x1),(=x)} _

Outline

DRMaxSAT

DRMaxSAT: DRE

Dual-Rail Encoding (DRE) (DACST, Al99)

Input: F CNF formula with N variables X = {x1,...,xn}

DRMaxSAT: DRE

Dual-Rail Encoding (DRE) ST
Input: F CNF formula with N variables X = {x1,...,xn}

Output: MaxSAT problem < H,S >:

DRMaxSAT: DRE

Dual-Rail Encoding (DRE)
Input: F CNF formula with N variables X = {x1,...,xn}

Output: MaxSAT problem < H,S >:
e for each x; € X:
— associate new variables p; and n;

x;=1iff p; =1, and x; =0iff n; =1

— add to S the clauses (p;) and (n;)
— add to H the clause (—p; V —n;) (P clauses)

[DAC87, Al99]

DRMaxSAT: DRE

Dual-Rail Encoding (DRE)
Input: F CNF formula with N variables X = {x1,...,xn}

Output: MaxSAT problem < H,S >:
e for each x; € X:
— associate new variables p; and n;

x;=1iff p; =1, and x; =0iff n; =1

— add to S the clauses (p;) and (n;)
— add to H the clause (—p; V —n;) (P clauses)

e for each clause ¢ € F add to H the clause c’:
— if x; € ¢ then —=n; € ¢’
— if =x; € c then —p; € ¢’

[DAC87, Al99]

DRMaxSAT: DRE Example

F = {(—\Xl V ﬂX2), (Xl)a (X2)7 (ﬂx2)}

DRMaxSAT: DRE Example

F = {(—\Xl V ﬂX2), (Xl)a (X2)7 (ﬂx2)}

® MaxSAT problem < H,S >

DRMaxSAT: DRE Example

F=A{(—x1V—x2),(x1), (x2), (—x2)}

® MaxSAT problem < H,S >
® for xq:

— create p; and m

- add (p1), (m) to S

— add (_'pl \Y _|I71) to H
® for xo:

— create pp and m

— add (p2), (m2) to S

— add (_'p2 V _|I72) to H

DRMaxSAT: DRE Example

F = {(—|X1 V _‘X2), (X1)> (X2)7 (_‘X2)}

® MaxSAT problem < H,S >

o for (—x1 V —xo):
— add (—p1 V—p2) to H

e for (x1), (x2), (—x2):
— add ("I’)l), (_‘nz), (_\p2) to H

DRMaxSAT: DRE Example

F={(—x1V-x),(x1), (%), (-x)}

MaxSAT problem < H,S >

DRMaxSAT: DRE Example

F={(—x1V-x),(x1), (%), (-x)}

MaxSAT problem < H,S > :
S ={(p1), (m), (p2), (m)}

H ={(-p1V —n1),(=p2 V),
(=p1V —p2),

(=m), (=n2), (=p2)}

DRMaxSAT: DRE Example

F={(—x1V-x),(x1), (%), (-x)}

MaxSAT problem < H,S > :
S ={(p1), (m), (p2), (n1)}
H={(=p1V), (-p2V =),

(—=p1 V —p2),

(=m), (=n2), (=p2)}

MaxSAT Cost: 3

DRMaxSAT

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies
at least N clauses in S. [SAT17]

DRMaxSAT

Theorem
F is satisfiable iff there is a truth assignment satisfying H that satisfies
at least N clauses in S. [SAT17]

Example: N =2 and MaxSAT cost 3, thus F is unsatisfiable.

Outline

DRMaxSAT /basic MaxHS vs Pigeonhole Principle

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Propositonal encoding of PHPT+1
® Variables: xj, i € [m+1], j € [m]
xjj = 1 iff pigeon i is place in hole j

N=(m+1)m

Pigeonhole Principle

Pigeonhole Principle: If m + 1 pigeons are distributed by m holes, then
at least one hole contains more than one pigeon.

Propositonal encoding of PHPT+1
® Variables: xj, i € [m+1], j € [m]
xjj = 1 iff pigeon i is place in hole j

N=(m+1)m

e Contraints:
m+1

/\ (X,'l\/...\/X,'m)

i=1

m m+1

A AN xigVoxy)

j=1 i=1h=1

DRE of Pigeonhole Principle

DRE(PHPTTL):
e for each xj;, i € [m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

DRE of Pigeonhole Principle

DRE(PHPTTL):
e for each xj;, i € [m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € [m+1]:

L= (—|n,-1 V...V _\n,'m)

DRE of Pigeonhole Principle

DRE(PHPTTL):
e for each xj;, i € [m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € [m+1]:

L= (—|n,-1 V...V _\n,'m)

e for each j € [m]:

m m+1

M= N\ N\ (=pijV —pi)

=1 h=1

DRE of Pigeonhole Principle

DRE(PHPTTL):
e for each xj;, i € [m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € [m+1]:

L= ("ﬁ,’l V...V _\n,'m)

e for each j € [m]:

m m+1

M= N\ N\ (=pijV —pi)

=1 h=1

PHP™ ! unsatisfiable if cost > N+ 1= (m+1)m+1

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < L;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 1 in polynomial time.

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < L;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 1 in polynomial time.

Proof Idea:
® Core obtained by unit propagation
® Only one set to hit

® costisl

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < M;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < M;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:
® Order the clauses in the SAT solver (via an ordering of the
variables)

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < M;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.

Proof Idea:
® Order the clauses in the SAT solver (via an ordering of the
variables)
e Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

Computing MaxSAT cost of DRE(PHP™ 1)

Proposition
Given < M;, S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of m in polynomial time.
Proof Idea:
® Order the clauses in the SAT solver (via an ordering of the
variables)

e Cores induce sets to hit in MHS that correspond to a known graph
(a clique or a clique plus one extra vertex)

® | ast iteration corresponds to a clique of size m + 1, with minimum
hitting set of size m (cost)

Outline

DRMaxSAT /basic MaxHS vs Doubled Pigeonhole Principle

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m 4 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m 4 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Propositonal encoding of 2PHP,2,,’"“'1
® Variables: xj, i € [2m+1], j € [m]
xjj = 1 iff pigeon i is place in hole j

N=(2m+1)m

Doubled Pigeonhole Principle

Doubled Pigeonhole Principle: If 2m 4 1 pigeons are distributed by m
holes, then at least one hole contains more than two pigeons.

Propositonal encoding of 2PHP,2,,’"“'1
® Variables: xj, i € [2m+1], j € [m]
xjj = 1 iff pigeon i is place in hole j

N=(2m+1)m

e Contraints:
2m+1

/\ (X,'l\/...\/X,'m)

i=1

2m—1 2m 2m+1

AWAWANS AR REN)

i1=1 h=1 =3

>3

DRE of Doubled Pigeonhole Principle

DRE(2PHP2M+1):
e for each xjj, i € 2m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

DRE of Doubled Pigeonhole Principle

DRE(2PHP2M+1):
e for each xjj, i € 2m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € 2m + 1]:

L= (—|n,-1 V...V _\n,'m)

DRE of Doubled Pigeonhole Principle

DRE(2PHP2M+1):
e for each xjj, i € 2m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € 2m + 1]:

L= (—|n,-1 V...V _\n,'m)

e for each j € [m]:

2m—1 2m 2m+1

Mi= N N N (5pijV=pii Vv —py))

i1=1 h=1 i3=3

DRE of Doubled Pigeonhole Principle

DRE(2PHP2M+1):
e for each xjj, i € 2m+1], j € [m]:
— associate variables p; and nj;

— add soft clauses (pj), (nj)
— add hard P-clause (—pjj V —njj)

e for each i € 2m + 1]:

L= (—|n,-1 V...V _\n,'m)

e for each j € [m]:

2m—1 2m 2m+1

Mi= N N N (5pijV=pii Vv —py))

i1=1 h=1 i3=3

2PHP™ ! unsatisfiable if cost > N +1= (2m+1)m +1

Computing MaxSAT cost of DRE(2PHP2™+1)

Proposition
Given < M;,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 2m — 1 in polynomial time.

Computing MaxSAT cost of DRE(2PHP2™+1)

Proposition
Given < M;,S > there is an execution of the basic MaxHS algorithm
that computes a MaxSAT cost of 2m — 1 in polynomial time.

Proof Idea:

® Order the clauses in the SAT solver (via an ordering of the
variables)

® Cores induce sets to hit in MHS that correspond to a known
structure (a set of all triplets, or a set of all triplets plus some
triplets containing and additional element)

® | ast iteration corresponds to a minimum hitting set of size 2m — 1
(cost)

Outline

Conclusions

Conclusions

® MaxHS-like MaxSAT algorithms show good performance on
dual-rail encoded families of benchmarks
® Showed that DRMaxSAT using Basic MaxHS Algorithm can refute
in polynomial time:
— Pigeonhole Principle
— Doubled Pigeonhole Principle

® Future work will seek to :
— understand how MaxHS-like algorithms compare with core-guided
algortihms
— search for other principles (hard for resolution) for which
DRMaxSAT may be beneficial

	Basic MaxHS Algorithm
	DRMaxSAT
	DRMaxSAT/basic MaxHS vs Pigeonhole Principle
	DRMaxSAT/basic MaxHS vs Doubled Pigeonhole Principle
	Conclusions

